

FLOATECH

D2.3. Design Load Case Database for Code-to-Code Comparison

31/10/2022 Francesco Papi, Robert Behrens de Luna, Joseph Saverin, David Marten, Cyril Combreau, Giancarlo Troise, Gerardo Mirra, Alessandro Bianchini Università degli studi di Firenze

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007142

Document track details

Project acronym	FLOATECH
Project title	Optimization of floating wind turbines using innovative control techniques and fully coupled open-source engineering tool
Starting date	01.01.2021
Duration	36 months
Programme	H2020-EU.3.3.2 Low-cost, low-carbon energy supply
Call identifier	H2020-LC-SC3-2020-RES-RIA
Grant Agreement No	101007142

Deliverable Information						
Deliverable number	2.3					
Work package number	2					
Deliverable title	Design Load Case Database for Code-to-Code Comparison					
Lead beneficiary	UNIFI					
Author	F. Papi					
Due date	31/10/2022					
Actual submission date	31/10/2022					
Type of deliverable	Report					
Dissemination level	Public					

Version management

Document history and validation						
Version	Name	Date	Comment			
V 0.1	F. Papi, UNIFI	21/10/2022	First draft			
V 0.2	R. Behrens de Luna, TU Berlin	24/10/2022	Updated draft internally reviewed			
V 0.3	G. Troise, Seapower	25/10/2022	Updated draft internally reviewed			
V 0.4	A. Bianchini, UNIFI	25/10/2022	Updated draft internally reviewed			
V1.0	F. Papi, UNIFI	25/10/2022	Final version			

All information in this document only reflects the author's view. The European Commission is not responsible for any use that may be made of the information it contains.

Background: about the FLOATECH project

The FLOATECH project is a Research and Innovation Action funded by the European Union's H2020 programme aiming to increase the technical maturity and the cost competitiveness of floating offshore wind (FOW) energy. This is particularly important because, due to the limitations of available installation sites onshore, offshore wind is becoming crucial to ensure the further growth of the wind energy sector.

The project is implemented by a European consortium of 5 public research institutions with relevant skills in the field of offshore floating wind energy and 3 industrial partners, two of which have been involved in the most recent developments of floating wind systems.

The approach of FLOATECH can be broken down into three actions:

- The development, implementation and validation of a user-friendly and efficient design engineering tool (named QBlade-Ocean) performing simulations of floating offshore wind turbines with an unseen combination of aerodynamic and hydrodynamic fidelity. The advanced modelling theories will lead to a reduction of the uncertainties in the design process and an increase of turbine efficiency.
- The development of two innovative control techniques (i.e., Active Wave-based feed-forward Control
 and the Active Wake Mixing) for Floating Wind Turbines and floaters, combining wave prediction and
 anticipation of induced platform motions. This is expected to improve the performance of each
 machine and to minimize wake effects in floating wind farms, leading to a net increase in the annual
 energy production of the farm.
- The economic analysis of these concepts to demonstrate qualitatively and quantitatively the impact of the developed technologies on the Levelized Cost of Energy (LCOE) of FOW technology.

In addition to the technological and economic impacts, the project is expected to have several impacts at societal, environmental and political levels, such as: public acceptance, due to no noise and visibility issues of FOWT; very low impact on biodiversity and wildlife habitat because no piles are needed be to installed into the seabed; the use of less material and space thanks to an environmentally friendly design; the promotion of the installation of FOW in transitional water depths (30-50 meters), as the costs for FOW at those locations will become more competitive compared to the fixed bottom foundations.

Table of contents

EX	EXECUTIVE SUMMARY				
1.	. DESCRIPTION OF DATASET	7			
2.	. WIND TURBINE MODELS	7			
	2.1. NREL 5MW OC4	7			
	2.2. DTU 10MW SOFTWIND	7			
	2.3. DTU 10MW HEXAFLOAT	9			
	2.4. ROSCO CONTROLLER	9			
3.	. ENVIRONMENTAL CONDITIONS	9			
	3.1. ENVIRONMENTAL CONDITION DATABASE	10			
4.	LIST OF SIMULATED DLCS	10			
5.	SIMULATION NAMING SCHEME	11			
6.	. DATA FORMAT	13			
	6.1. OUTPUTS	13			
	6.2. FORMAT	18			
7.	. REFERENCES	18			

List of acronyms and abbreviations

Acronym / Abbreviation	Meaning / Full text
DLC	Design Load Case
ECN	Ecòle Centrale Nantes
FOW	Floating Offshore Wind
FOWT	Floating Offshore Wind Turbine
CoG	Center of Gravity
LCOE	Levelized Cost of Energy
WP2	Work Package 2

EXECUTIVE SUMMARY

This document is a deliverable of the FLOATECH project, funded under the European Union's Horizon 2020 research and innovation programme under grant agreement No 101007142.

In work package 2 (WP2) a detailed validation and verification of the capabilities of QBlade-Ocean is ongoing. Thereby, three wind turbine models mounted on floating substructures with differing characteristics serve as the means for the validation. A detailed description of the models and an initial comparison of results to other state-of-the-art simulation codes is provided in Deliverable 2.1 [1] and 2.2 [2], respectively. This document builds upon the work that is described in the previous deliverables and is the first milestone towards a comprehensive code-to-code comparison and uncertainty quantification study that is being carried out within the work package. In particular, this report acts as a supporting documentation to a dataset containing Floating Offshore Wind Turbine (FOWT) calculations in various design situations, computed with three different codes. In more detail, as presented in Deliverables 2.1 and 2.2, three floating platform archetypes are used in the code-to-code comparison ongoing in work package 2: a semi-submersible-type floater and a spar-type floater as well as the Hexafloat[®] concept recently proposed by Saipem[®]. The three test-cases are based on the concepts described in [1]. As presented in the following, two of the three models required adaptations. In fact, during the work leading to Deliverable 2.2, the numerical models were built and tuned to match the characteristic of scaled wavebasin experimental articles. Therefore, some of the assumptions that were made would not be realistic on a full-scale prototype and needed to be changed. The three concepts are simulated in a variety of design load cases (DLCs), as explained in the following. Results of the numerical investigation constitute this dataset.

The current document acts as a companion description of the dataset of calculations that is provided for the three test cases. In particular, it provides information about the contents of each output, the naming scheme used to identify the different outputs, the Design Load Cases (DLCs) that were simulated and the reference environmental conditions that were used.

1. DESCRIPTION OF DATASET

The dataset contains the results produced during the code-to-code comparison in Work Package 2 of the FLOATECH H2020 project. The dataset contains the raw outputs of three wind turbine simulation codes, QBlade-Ocean [3,4], OpenFAST [5] and DeepLines Wind[™]. In the dataset, results for three different Floating Offshore wind turbines (FOWT) can be found, as described in the following. The testcases are simulated in a range of Design Load Cases (DLCs) defined with international wind turbine certification standards in mind [6]. The full dataset can be found at:

https://doi.org/10.5281/zenodo.7254241

2. WIND TURBINE MODELS

2.1. NREL 5MW 0C4

This section describes the NREL 5MW RWT mounted on the DeepCWind semi-submersible platform, henceforth called the 5MW OC4 testcase. This wind turbine model was extensively used in the OC4 code-to-code comparison [7] and hence the model definition is publicly available [8]. The wind turbine rotor and tower are described in [9], while the semi-submersible and mooring line layout is described in [8].

2.2. DTU 10MW SOFTWIND

This section describes the DTU 10MW RWT mounted on the SOFTWIND spar platform, henceforth called the 10MW SOFTWIND testcase. This wind turbine model was experimentally tested at Ecòle Centrale Nantes (ECN) [10] and was used in WP2.1 of the current project [1,2]. The wind turbine rotor is described in [11], while the semi-submersible and mooring line layout is described in [1,10]. Some adaptations to the model have been done so that it can be used in a full design load calculation. Firstly, the tower that was defined for the DTU 10MW RWT mounted on the OO-Star semi-submersible platform was used [12]. In fact, the first fore-aft and side-side frequencies of the tower matching the definition of the wave-basin model, used in the validation of QBlade-Ocean [2] are located in the 3P operating range. The tower designed for the OO-Star semi-submersible platform on the other hand is much stiffer with natural frequencies well above the 3P excitation range. The masses and inertias of the Nacelle are also changed, they are now the same as defined in the DTU 10MW RWT definition [11], rather than being defined to match the wave-basin model mass and inertia [10]. While its outer shape was left unchanged, the mass and inertia of the floater were modified. In particular, mass is reduced by approximately 1% in order to partially compensate for the increase in tower weight. At the same time the center of mass is also lowered. The mass and inertia properties of the floater are defined based on the following hypothesis:

• Uniform steel wall thickness of the floater of 100 mm. A plate of 100 mm of thickness is placed also at the connection between floater and tower to model the transition piece weight. A density of 8000 kg/m3 is considered, larger than 7800 kg/m3 of steel to account for the additional weight of welds of connections between floater pieces. This approach was followed based on the considerations in [13], where a similar approach is proposed.

• Concrete ballast. In particular MagnaDense[®] ballast is used, similarly to [13].

The resulting Center of Gravity (CoG), overall mass and inertias of the floater are calculated based on a CAD model of the spar. The system mass and inertia characteristics of the floater are summarized in table 1.

The final modification to the wave-basin model is the removal of the additional weights that are placed at the delta-connection of the mooring lines. These weights were added in the numerical models in order to consider the weight of the load-cell that is present in the experiments.

Figure 1: SOFTWIND spar floater geometry for code-to-code comparisons.

Parameter	WP2.1 floater	WP2.2 floater
Mass (kg)	2.012E+07	19918800
CoG (m)	-68.8	-74.92
I _{xx} (CoG) (kg m ²)	2.37E+10	9751766928
I _{YY} (CoG) (kg m ²)	2.37E+10	9751766928
I _{ZZ} (CoG) (kg m ²)	6.2E+8	930499505
Pitch nat. Freq. (s)	33	28

Table 1: SOFTWIND spar	floater mass &	inertia	characteristics
------------------------	----------------	---------	-----------------

2.3. DTU 10MW HEXAFLOAT

The DTU 10MW Hexafloat model description can be found in Deliverables 2.1 and 2.2 of the FLOATECH project [1,2].

2.4. ROSCO CONTROLLER

For all three wind turbine models the ROSCO open-source controller [14] is used. More specifically, ROSCO v2.4.1 is used. This controller has been selected as it is open-source and it includes an automatic tuning toolbox that can be used to determine the proportional and integral gains of the blade pitch controller in a simple manner [14].

A traditional $K - \omega^2$ law is used for the torque controller below rated windspeed. Above rated windspeed constant-torque control strategy is used. The pitch controller gains are tuned using ROSCO controller's automatic pitch-tuning routine [14,15], based on the OpenFAST models of the two rotors. The controller includes a nacelle-velocity feedback loop developed especially for FOWTs, with the objective of avoiding negative blade-pitch controller damping that can occur in the case of FOWTs. However, this feature is not used in this work package but rather, the more traditional strategy of de-tuning the pitch controller is used. The natural frequencies and damping ratios of the pitch controller used for the three models are shown in table 2. For all three models the natural frequency of the blade pitch controller is set below the platform pitch natural frequency, mitigating possible controller-driven system instabilities.

Model	Nat. f. (ω)	Damping ratio ($meta$)
NREL 5MW OC4	0.2 [rad/s]	1 [-]
DTU 10MW SOFTWIND	0.14 [rad/s]	1 [-]
DTU 10MW HEXAFLOAT	0.114 [rad/s]	1 [-]

Table 2: Natural frequency and damping ration of the ROSCO pitch controller

3. ENVIRONMENTAL CONDITIONS

Calculations in the current dataset are performed for an offshore installation site west of the islad of Barra (Scotland).

The West of Barra site is located on the European continental shelf and therefore, water depths are limited to about 120-130 m. According to [16], average depth at the site is 95 m and within the identified installation area depth varies between 56 and 118 m. Water depth in the point where met-ocean conditions were sampled for the FLOATECH project is 123 m according to [17]. Importantly for WP2, this depth allows for the sampling of mid-depth wave characteristics, representative of sites where FOWT wind parks are planned to be installed. As a matter of fact, if we look at the only two operating commercial FOWT wind farms in Europe at the current date, the Hywind Scotland [18] and WindFloat ATLANTIC [19] wind farms, reported water depth is 90 and 100 m [18,19] respectively. For the generation of the current

dataset, water depth is ignored, and the West of Barra site is used only to extract wave and wind characteristics. The considered water depth is defined based on the nominal installation depth of the three testcases that were considered: 200 m for the NREL 5MW OC4 and DTU 10MW SOFTWIND models and 250 m for the DTU 10MW HEXAFLOAT model. Moreover, no currents are considered in the calculations. A water density of 1025 kg/m³ is assumed.

3.1. ENVIRONMENTAL CONDITION DATABASE

The combination of wind speed, significant wave height and wind-wave misalignment are defined on a Design Load Case basis with the procedure described in [20]. Starting from hindcast wind and wave data for the West of Barra site, a joint probabilistic model of the four environmental variables (wind speed, significant wave height, peak spectral period, wind-wave misalignment) is derived. The model is then used to compute environmental contours that define the extreme met-ocean conditions (DLC 1.6, 6.1, 6.2, 6.3). The expected or normal met-ocean conditions are instead used in DLCs 1.2 and 1.3.

The complete dataset is available at the following link:

https://doi.org/10.5281/zenodo.6972014

4. LIST OF SIMULATED DLCS

The DLCs that make up the current database are selected in order to provide a good estimation of fatigue and extreme loads whilst limiting as much as possible the total number of simulations. In fact, considering the full design space is not needed since full turbine certification is out of the scopes of this project. The list of selected DLCs does not include cases where fault events are simulated. This simplifies future comparisons using this dataset.

The final list contains the same DLCs that were simulated in the design of the IEA 15MW RWT [21,22], with the addition of DLC 1.2 for fatigue loads. Except for fault cases, which are not included in the current list, they match the load cases simulated by Jonkman in [23]. In the latter reference, the authors state that these DLCs are selected to cover essential design-driving situations, which is the same objective of the current document.

A synthetic list of the simulated DLCs is shown in table 3.

DLC	Wind Speed [m/s]	Sea Condition	Significant Wave Height [m]	Peak Period [s]	Shape Factor [-]	Wave Heading [°]	Yaw [°]	Sea Currents Condition	Total N° Seeds
1.2	3-25	NSS	1-8	8-14	1	-150°-150°	0, +10°	None	504
1.3	4	NSS	1.510079	9.70803	1	0	0, ±10°	None	9
	6		1.685018	9.88332	1	0	0, ±10°		9
	8		1.924241	10.1135	1	0	0, ±10°		9
	10		2.224114	10.3894	1	0	0, ±10°		9
	12		2.583252	10.7054	1	0	0, ±10°		9
	14		3.003619	11.0597	1	0	0, ±10°		9
	16		3.489142	11.4529	1	0	0, ±10°		9
	18		4.043038	11.8856	1	0	0, ±10°		9
	20		4.666551	12.3573	1	0	0, ±10°		9
	22		5.359436	12.8672	1	0	0, ±10°		9
	24		6.120858	13.4148	1	0	0, ±10°		9
1.4	8	NSS	1.924241	10.1135	1	0	0	None	2
	10		2.224114	10.3894	1	0	0		2
	12		2.583252	10.7054	1	0	0		2
1.6	4	SSS	8.076751	14.7818	1	0	0, ±10°	None	9
	6		8.842851	15.3075	1	0	0, ±10°		9
	8		9.468955	15.7347	1	0	0, ±10°		9
	10		9.864609	16.0038	1	0	0, ±10°		9
	12		10.02935	16.1157	1	0	0, ±10°		9
	14		10.08412	16.1529	1	0	0, ±10°		9
	16		10.21367	16.2408	1	0	0, ±10°		9
	18		10.54712	16.4668	1	0	0, ±10°		9
	20		11.1205	16.8549	1	0	0, ±10°		9
	22		11.90511	17.3854	1	0	0, ±10°		9
	24		12.84265	18.0190	1	0	0, ±10°		9
6.1	36.92	ESS	16.42	18.68	1.00	-30°/0°/30°	0, ±10°	None	18
6.3	31.9	ESS	11.93	15.95	1.00	-30°/0°/30°	0, +10°	None	16
6.2 ¹	36.92	ESS	16.42	18.68	1.00	see .xlsx	0, ±20°	None	18

Table 3: Synthetic list of DLCs

5. SIMULATION NAMING SCHEME

In order to distinguish the simulations, a naming scheme is defined. The selected scheme provides information on the code that is used, the testcase, the DLC, the environmental conditions (wind speed, wave height, spectral period, wind/wave misalignment, vertical inflow angle), the seed of the wind and

¹ Simulates loss of grid in storm. Reduced number of directions and seeds. See accompanying .xslx file for details

waves as well as the operating condition (yaw error). The simulation naming scheme is shown in table 4, with an example taken from the 5MWOC4 series further below in figure 2.

		-				
IDENTIFIER	EXAMPLES					
code identifier	OF	QB	DL			
testcase id	5MWOC4 10MWSOFT 10MWHEX					
DLC id	LC#					
wind speed	ws#					
seed for wind & waves	s#					
significant wave height	hs#					
peak spectral period	tp#					
wind/wave misalignment	ms#					
vertical inflow angle	i#					
yaw error	y#					

Table 4: Simulation naming scheme

6. DATA FORMAT

6.1. OUTPUTS

The list of outputs contained in the dataset can be found in table 5.

	#	NAME	ę	QB	₽	DESCRIPTION	unit	notes QB	Notes DL
	1	Time				time	S		
	2	Wind1VelX				wind velocity X @ hub height	m/s		at the RNA position
env.	3	Wind1VelY				wind velocity Y @ hub height	m/s		at the RNA position
	4	Wind1VelZ				wind velocity Z @ hub height			at the RNA position
	5	Wave1Elev				wave elevation @ platform center	m		at (0,0) position
	6	PtfmSurge				Platform horizontal surge (translational) displacement	m		
	7	PtfmSway				Platform horizontal sway (translational) displacement	m		
platf	8	PtfmHeave				Platform vertical heave (translational) displacement	m		
orm	9	PtfmRoll				Platform roll tilt angular (rotational) displacement.	deg		
	10	PtfmPitch				Platform pitch tilt angular (rotational) displacement.	deg		
	11	PtfmYaw				Platform yaw angular (rotational) displacement.	deg		
	12	FAIRTEN1				tension of mooring line 1 at fairlead	kN		
Moor.	13	FAIRTEN2				tension of mooring line 2 at fairlead	kN		
	14	FAIRTEN3				tension of mooring line 3 at fairlead	kN		
	15	RotSpeed				rotor speed	rpm		
со	16	BldPitch1				B1 pitch	deg		
ntro	17	GenTq				generator torque	kNm		
<u>o</u>	18	GenPwr				generator power	kW	No losses SW HF	No losses
Loa	19	TwrBsFxt				tower base x force	kN		@ 2.9 m from HF TB, @ 2 m from SW TB
spt	20	TwrBsFyt				tower base y force	kN		@ 2.9 m from HF TB, @ 2 m from SW TB

Table 5: output list

21	TwrBsFzt		tower base z force	kN	@ 2.9 m from HF TB, @ 2 m from SW TB
22	TwrBsMxt		tower base side-side bending moment	kNm	@ 2.9 m from HF TB, @ 2 m from SW TB
23	TwrBsMyt		tower base fore-aft bending moment	kNm	@ 2.9 m from HF TB, @ 2 m from SW TB
24	TwrBsMzt		tower base yaw bending moment	kNm	@ 2.9 m from HF TB, @ 2 m from SW TB
25	YawBrFxp		yaw br. x-force (in tower top coords.)	kN	@ 106.5 m from HF TB, @ 103.6 m from SW TB
26	YawBrFyp		yaw br. y-force (in tower top coords.)	kN	@ 106.5 m from HF TB, @ 103.6 m from SW TB
27	YawBrFzp		yaw br. z-force (in tower top coords.)	kN	@ 106.5 m from HF TB, @ 103.6 m from SW TB
28	YawBrMxp		yaw br. side-side bending moment (in tower top coords.)	kNm	@ 106.5 m from HF TB, @ 103.6 m from SW TB
29	YawBrMyp		yaw br. fore-aft bending moment (in tower top coords.)	km	@ 106.5 m from HF TB, @ 103.6 m from SW TB
30	YawBrMzp		yaw br. yaw moment (in tower top coord sys)	kN- m	@ 106.5 m from HF TB, @ 103.6 m from SW TB
31	RootFxc1		B1 root out of plane force (in coned coord.sys)	kN	
32	RootFyc1		B1 root in plane force (in coned coord.sys)	kN	
33	RootFzc1		B1spanwise force (in coned coord.sys)	kN	
34	RootFxc2		B2 root out of plane force (in coned coord.sys)	kN	
35	RootFyc2		B2 root in plane force (in coned coord.sys)	kN	
36	RootFzc2		B2 spanwise force (in coned coord.sys)	kN	
37	RootFxc3		B3 root out of plane force (in coned coord.sys)	kN	
38	RootFyc3		B3 root in plane force (in coned coord.sys)	kN	
39	RootFzc3		B3 spanwise force (in coned coord.sys)	kN	
40	RootMxc1		B1 root in plane bending moment (in coned coord.sys)	kNm	

41	RootMyc1		B1 root out of plane bending moment (in coned coord.sys)	kNm	
42	RootMzc1		B1 twist moment (in coned coord. sys)	kNm	
43	RootMxc2		B2 root in plane bending moment (in coned coord.sys)	kNm	
44	RootMyc2		B2 root out of plane bending moment (in coned coord.sys)	kNm	
45	RootMzc2		B2 twist moment (in coned coord. sys)	kNm	
46	RootMxc3		B3 root in plane bending moment (in coned coord.sys)	kNm	
47	RootMyc3		B3 root out of plane bending moment (in coned coord.sys)	kNm	
48	RootMzc3		B3 twist moment (in coned coord. sys)	kNm	
49	RootFxb1		B1 root out of plane force (in Bcoord.sys)	kN	
50	RootFyb1		B1 root in plane force (in Bcoord.sys)	kN	
51	RootFzb1		B1spanwise force (in Bcoord.sys)	kN	
52	RootFxb2		B2 root out of plane force (in Bcoord.sys)	kN	
53	RootFyb2		B2 root in plane force (in Bcoord.sys)	kN	
54	RootFzb2		B2 spanwise force (in Bcoord.sys)	kN	
55	RootFxb3		B3 root out of plane force in Bcoord.sys)	kN	
56	RootFyb3		B3 root in plane force (in Bcoord.sys)	kN	
57	RootFzb3		B3 spanwise force (in Bcoord.sys)	kN	
58	RootMxb1		B1 root in plane bending moment (in Bcoord.sys)	kNm	
59	RootMyb1		B1 root out of plane bending moment (in Bcoord.sys)	kNm	
60	RootMzb1		B1 twist moment (in B coord. sys)	kNm	
61	RootMxb2		B2 root in plane bending moment (in B coord.sys)	kNm	
62	RootMyb2		B2 root out of plane bending moment (in B coord.sys)	kNm	
63	RootMzb2		B2 twist moment (in B coord. sys)	kNm	
64	RootMxb3		B3 root in plane bending moment (in Bcoord.sys)	kNm	
65	RootMyb3		B3 root out of plane bending moment (in B coord.sys)	kNm	

	66	RootMzb3		B3 twist moment (in B coord. sys)	kNm	
	67	TTDspFA		tower top fore-aft displ.	m	@ 106.5 m from HF TB, @ 103.6 m from SW TB
	68	TTDspSS		tower top side-side displ.	m	@ 106.5 m from HF TB, @ 103.6 m from SW TB
	69	NcIMUTAxs		nacelle fore-aft acceleration	m/s2	
	70	NcIMUTAys		nacelle side-side acceleration	m/s2	
	71	NcIMUTVxs		nacelle fore-aft velocity	m/s	
	72	NcIMUTVys		nacelle side-side velocity	m/s	
	73	TipDxc1		B1 tip fore-aft displacement	m	
	74	TipDyc1		B1 tip side-side displacement	m	
	75	TipDxc2		B2 tip fore-aft displacement	m	
	76	TipDyc2		B2 tip side-side displacement	m	
	77	TipDxc3		B3 tip fore-aft displacement	m	
	78	TipDyc3		B3 tip side-side displacement	m	
	79	RotThrust		LSS thrust force	kN	
	80	LSShftFxa		LSS thrust force	kN	
	81	LSShftFya		Rotating LSS shear force	kN	
	82	LSShftFza		Rotating LSS shear force	kN	
	83	LSShftFys		Nonrotating LSS shear force	kN	
	84	LSShftFzs		Nonrotating LSS shear force	kN	
	85	LSShftMxa		LSS torque	kNm	
	86	LSSTipMya		Rotating LSS bending moment at the shaft tip	kNm	
	87	LSSTipMza		Rotating LSS bending moment at the shaft tip	kNm	
	88	LSSTipMys		Nonrotating LSS bending moment at the shaft tip	kNm	
	89	LSSTipMzs		Nonrotating LSS bending moment at the shaft tip	kNm	
1	90	RtAeroFxh		rotor aerodynamic thrust	Ν	
Aero	91	RtAeroMxh		rotor aerodynamic torque	N-m	
0	92	RtAeroPwr		rotor aerodynamic power	W	
	93	B1HdSFxi		hydrostatic force in x	kN	
Hydro	94	B1HdSFyi		hydrostatic force in y	kN	
	95	B1HdSFzi		hydrostatic force in z	kN	
	96	B1HdSMxi		X hydrostatic moment	kNm	
	97	B1HdSMyi		Y hydrostatic moment	kNm	
	98	B1HdSMzi		Z hydrostatic moment	kNm	
	99	B1RdtFxi		radiation force in x	kN	
	100	B1RdtFyi		radiation force in y	kN	
	101	B1RdtFzi		radiation force in z	kN	
	102	B1RdtMxi		radiation moment around x	kNm	
	103	B1RdtMyi		radiation moment around y	kNm	

	104	B1RdtMzi		radiation moment around z	kNm		
	105	B1WvsF1xi		diffraction force in x	kN		
	106	B1WvsF1yi		diffraction force in y	kN		
	107	B1WvsF1zi		diffraction force in z	kN		
	108	B1WvsM1xi		diffraction moment around x	kNm		
	109	B1WvsM1yi		diffraction moment around y	kNm		
	110	B1WvsM1zi		diffraction moment around z	kNm		
	111	B1WvsF2xi		sum frequency force in x	kN	not for SW	not for SW& HF
				slowly varying drift force in x	kN	not for SW	not for SW & HF
	112	B1WvsF2yi		sum frequency force in y	kN	not for SW	not for SW & HF
				slowly varying drift force in y	kN	not for SW	not for SW & HF
	113	B1WvsF2zi		sum frequency force in z	kN	not for SW	not for SW & HF
				slowly varying drift force in z	kN	not for SW	not for SW & HF
	114	B1WvsM2xi		sum frequency moment around x	kNm	not for SW	not for SW& HF
				slowly varying drift moment around x	kNm	not for SW	not for SW & HF
	115	B1WvsM2yi		sum frequency moment around y	kNm	not for SW	not for SW & HF
				slowly varying drift moment around ys	kNm	not for SW	not for SW & HF
	116	B1WvsM2zi		sum frequency moment around z	kNm	not for SW	not for SW & HF
				slowly varying drift moment around z	kNm	not for SW	not for SW & HF
	117	CwCogX		Counterweight X pos. @ CoG	m		
	118	CwCogY		Counterweight Y pos. @ CoG	m		
	119	CwCogZ		Counterweight Z pos. @ CoG	m		
Specific for HEXAFLOAT	120	TendTens1		Tendon 1 Tension	Ν		@ 30.8 m from top fairlead
	121	TendTens2		Tendon 2 Tension	Ν		@ 30.8 m from top fairlead
	122	TendTens3		Tendon 3 Tension	Ν		@ 30.8 m from top fairlead
	123	TendTens4		Tendon 4 Tension	Ν		@ 30.8 m from top fairlead
	124	TendTens5		Tendon 5 Tension	Ν		@ 30.8 m from top fairlead
	125	TendTens6		Tendon 6 Tension	Ν		@ 30.8 m from top fairlead

6.2. FORMAT

The data is formatted in OpenFAST binary format. The suggested method to open the data files is trough Python (PyFAST toolbox) or using the OpenFAST matlab toolbox [24].

6.3. ADDITIONAL COMMENTS

At the time of writing some issues were encountered with the OpenFAST model of the SOFTWIND 10MW turbine in DLC6.2. In particular, some simulations did not converge due to unresolved instability issues and were therefore not included in the dataset.

7. **REFERENCES**

- [1] Perez-Becker, S., and Luna, R. B. D., D2.1. Aero-Hydro-Elastic Model Definition in QBlade Ocean.
- [2] Perez-Becker, S., Saverin, J., Luna, R. B. D., Papi, F., Ducasse, M.-L., Marten, D., and Bianchini, A., *D2.2. Validation Report of QBlade-Ocean*.
- [3] Marten, D., 2020, "QBlade: A Modern Tool for the Aeroelastic Simulation of Wind Turbines."
- [4] Saverin, J., Marten, D., Perez-Becker, S., and Behrens De Luna, R., 2022, "D1.3 Training Manual, Project Partner Workshop and Public Dissemination."
- [5] "OpenFAST Documentation OpenFAST v3.0.0 Documentation" [Online]. Available: https://openfast.readthedocs.io/en/main/. [Accessed: 12-Jan-2022].
- [6] International Electrotechnical Commission, 2019, *IEC 61400-3: Wind Energy Generation Systems. Design Requirements for Floating Offshore Wind Turbines Part 3-2 Part 3-2.*
- [7] Robertson, A., Jonkman, J., Vorpahl, F., Popko, W., Qvist, J., Frøyd, L., Chen, X., Azcona, J., Uzunoglu, E., Guedes Soares, C., Luan, C., Yutong, H., Pengcheng, F., Yde, A., Larsen, T., Nichols, J., Buils, R., Lei, L., Nygaard, T. A., Manolas, D., Heege, A., Vatne, S. R., Ormberg, H., Duarte, T., Godreau, C., Hansen, H. F., Nielsen, A. W., Riber, H., Le Cunff, C., Beyer, F., Yamaguchi, A., Jung, K. J., Shin, H., Shi, W., Park, H., Alves, M., and Guérinel, M., 2014, "Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System," *Volume 9B: Ocean Renewable Energy*, American Society of Mechanical Engineers, San Francisco, California, USA, p. V09BT09A012.
- [8] Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A., and Luan, C., 2014, Definition of the Semisubmersible Floating System for Phase II of OC4, NREL/TP-5000-60601, 1155123.
- [9] Jonkman, J., Butterfield, S., Musial, W., and Scott, G., 2009, *Definition of a 5-MW Reference Wind Turbine for Offshore System Development*, NREL/TP-500-38060, 947422.
- [10] Arnal, V., 2020, "Experimental Modelling of a Floating Wind Turbine Using a 'Software-in-the-Loop' Approach," These de doctorat, Ecole centrale de Nantes.
- [11] Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L. C., Natarajan, A., and Hansen, M., 2013, *Description of the DTU 10 MW Reference Wind Turbine*, DTU Wind Energy Report-I-0092, DTU Wind Energy.
- [12] Yu, W., "D4.2 Public Definition of the Two LIFES50+ 10MW Floater Concepts," p. 32.
- [13] Leimeister, M., Kolios, A., and Collu, M., 2020, "Development and Verification of an Aero-Hydro-Servo-Elastic Coupled Model of Dynamics for FOWT, Based on the MoWiT Library," p. 33.

- [14] Abbas, N. J., Zalkind, D. S., Pao, L., and Wright, A., 2022, "A Reference Open-Source Controller for Fixed and Floating Offshore Wind Turbines," Wind Energy Sci., 7(1), pp. 53–73.
- [15] Abbas, N. J., Wright, A. D., and Pao, L., 2020, An Update to the NREL Baseline Wind Turbine Controller: Preprint, NREL/CP-5000-75433, National Renewable Energy Lab. (NREL), Golden, CO (United States).
- [16] Berque, J., Oceanographic and Meteorological Conditions for the Design, Deliverable 1.1.
- [17] "EMODnet Bathymetry Viewing and Download Service" [Online]. Available: https://portal.emodnet-bathymetry.eu/. [Accessed: 28-Oct-2022].
- [18] Equinor, "HYWIND SCOTLAND The World's First Commercial Floating Wind Farm" [Online]. Available: https://www.equinor.com > brochure-hywind-a4. [Accessed: 15-Mar-2022].
- [19] "WindFloat Atlantic Project," Power Technol.
- [20] Papi, F., Perignon, Y., and Bianchini, A., "Derivation of Met-Ocean Conditions for the Simulation of Floating Wind Turbines: A European Case Study," J. Phys. Conf. Ser., Proc. of the 77th Italian National Congress ATI (ATI 2022), p. 12.
- [21] Evan Gaertner, Jennifer Rinker, and Latha Sethutaman, 2020, *Definition of the IEA 15-Megawatt Offshore Refence Wind*, NREL/TP-5000-75698, IEA Wind.
- [22] Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M., and Barter, G., 2020, Definition of the UMaine VolturnUS-S Reference Platform Developed for the IEA Wind 15-Megawatt Offshore Reference Wind Turbine, NREL/TP-5000-76773, 1660012, MainId:9434.
- [23] Jonkman, J. M., 2007, Dynamics Modeling and Loads Analysis of an Offshore Floating Wind Turbine, NREL/TP-500-41958, 921803.
- [24] 2022, "MATLAB Toolbox for OpenFAST, Including MBC3."